The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism.
نویسندگان
چکیده
Xylanase A (Pf Xyn10A), in common with several other Pseudomonas fluorescens subsp. cellulosa polysaccharidases, consists of a Type II cellulose-binding domain (CBD), a catalytic domain (Pf Xyn10A(CD)) and an internal domain that exhibits homology to Type X CBDs. The Type X CBD of Pf Xyn10A, expressed as a discrete entity (CBD(X)) or fused to the catalytic domain (Pf Xyn10A'), bound to amorphous and bacterial microcrystalline cellulose with a K(a) of 2.5 x 10(5) M(-1). CBD(X) exhibited no affinity for soluble forms of cellulose or cello-oligosaccharides, suggesting that the domain interacts with multiple cellulose chains in the insoluble forms of the polysaccharide. Pf Xyn10A' was 2-3 times more active against cellulose-hemicellulose complexes than Pf Xyn10A(CD); however, Pf Xyn10A' and Pf Xyn10A(CD) exhibited the same activity against soluble substrates. CBD(X) did not disrupt the structure of plant-cell-wall material or bacterial microcrystalline cellulose, and did not potentiate Pf Xyn10A(CD) when not covalently linked to the enzyme. There was no substantial difference in the affinity of full-length Pf Xyn10A and the enzyme's Type II CBD for cellulose. The activity of Pf Xyn10A against cellulose-hemicellulose complexes was similar to that of Pf Xyn10A', and a derivative of Pf Xyn10A in which the Type II CBD is linked to the Pf Xyn10A(CD) via a serine-rich linker sequence [Bolam, Cireula, McQueen-Mason, Simpson, Williamson, Rixon, Boraston, Hazlewood and Gilbert (1998) Biochem J. 331, 775-781]. These data indicate that CBD(X) is functional in Pf Xyn10A and that no synergy, either in ligand binding or in the potentiation of catalysis, is evident between the Type II and X CBDs of the xylanase.
منابع مشابه
Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates.
Xylanase A (XYLA) and arabinofuranosidase C (XYLC) from Pseudomonas fluorescens subsp. cellulosa are modular enzymes consisting of discrete cellulose-binding domains (CBDs) and catalytic domains joined by serine-rich linker sequences. To evaluate the role of the CBDs and interdomain regions, the capacity of full-length and truncated derivatives of the two enzymes, lacking either the linker sequ...
متن کاملCharacterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains.
The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. ce...
متن کاملThe non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel.
A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA, constructed in lambda ZAPII, was screened for carboxymethyl-cellulase activity. The pseudomonad insert from a recombinant phage which displayed elevated cellulase activity in comparison with other cellulase-positive clones present in the library, was excised into pBluescript SK- to generate the plasmid pC48. The nucleotide seque...
متن کاملHomologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.
Clostridium thermocellum produces a consortium of plant-cell-wall hydrolases that form a cell-bound multi-enzyme complex called the cellulosome. In the present study two similar xylanase genes, xynU and xynV, were cloned from C. thermocellum strain YS and sequenced. The deduced primary structures of both xylanases, xylanase U (XylU) and xylanase V (XylV), were homologous with the previously cha...
متن کاملXylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes.
The complete nucleotide sequence of the Pseudomonas fluorescens subsp. cellulosa xynB gene, encoding an endo-beta-1,4-xylanase (xylanase B; XYLB) has been determined. The structural gene consists of an open reading frame (ORF) of 1775 bp coding for a protein of Mr 61,000. A second ORF (xynC) of 1712 bp, which starts 148 bp downstream of xynB, encodes a protein, designated xylanase C (XYLC), of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 342 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1999